Skip to main content

Posts

Calculus: A difficulty in understanding a step in a solution.

Here is the solution: But I could not understand how the last term in the fourth line came from the line before it, could anyone explain this for me please?

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you

Calculus: perpendicular planes in $\mathbb{R}^4$

Let $W \leq \mathbb{R}^n$ and set $$W^{\perp} = \{v \in \mathbb{R}^n | v.w =0, \hspace{0.25cm} \forall w \in W\}$$ (a) Show that $W^{\perp} \leq \mathbb{R}^n$ . (b) Let $v_1=\langle 1, 1, 1, 2\rangle$ , $v_2=\langle 2, 1, 1, 1\rangle$ , and $v_3=\langle -1, 2, 2, 7\rangle$ . Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^4$ be the transformation given by $e_1 \mapsto v_1$ , $e_2 \mapsto v_2$ , and $e_3 \mapsto v_3$ .Let $W=img(T)$ . Find a basis for $W$ and $W^{\perp}$ .

perpendicular planes in $\mathbb{R}^4$

Let $W \leq \mathbb{R}^n$ and set $$W^{\perp} = \{v \in \mathbb{R}^n | v.w =0, \hspace{0.25cm} \forall w \in W\}$$ (a) Show that $W^{\perp} \leq \mathbb{R}^n$ . (b) Let $v_1=\langle 1, 1, 1, 2\rangle$ , $v_2=\langle 2, 1, 1, 1\rangle$ , and $v_3=\langle -1, 2, 2, 7\rangle$ . Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^4$ be the transformation given by $e_1 \mapsto v_1$ , $e_2 \mapsto v_2$ , and $e_3 \mapsto v_3$ .Let $W=img(T)$ . Find a basis for $W$ and $W^{\perp}$ .