Skip to main content

[Community Question] Calculus: The dirichlet and harmonic functions why they are important

One of our user asked:

I am wondering why finding a function that is harmonic on the sphere and that respect some conditions on the frontiere of the sphere is important ?

  • This is called the Dirichlet problem, and I don't understand why we are interesting in this problem ?

  • Why are we want the function to be harmonic ?

I know what it means for a function to be harmonic, but I don't understand what is the "advantage" of being harmonic. Moreover does the solution of the Dircihlet helps solving real-life/physic problems ?

Thank you !


Comments

Popular posts from this blog

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

[Community Question] Calculus: Asymptotic behavior of $\sum\limits_{n=0}^{\infty}x^{b^n}$

One of our user asked: This follow my previous post here , where Song has proven that $\forall b>1,\lim\limits_{x\to 1^{-}}\frac{1}{\ln(1-x)}\sum\limits_{n=0}^{\infty}x^{b^n}=-\frac{1}{\ln(b)}$ , that is to say : $$\forall b>1,\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+o_{x\to1^-}\left(\log_b(1-x)\right)$$ (The $o_{x\to1^-}\left(\log_b(1-x)\right)$ representing a function that is asymptotically smaller than $\log_b(1-x)$ when $x\to1^{-}$ , that is to say whose quotient by $\log_b(1-x)$ converges to $0$ as $x\to1^{-}$ , see small o notation ) So we have here a first asymptotical approximation of $\sum\limits_{n=0}^{\infty}x^{b^n}$ . I now want to take it one step further and refine the asymptotical behaviour, by proving a stronger result which I conjecture to be true (backed by numerical simulations) : $$\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+O_{x\to1^-}\left(1\right)$$ (The $O_{x\to1^-}\left(1\right)$ representing a function that is asymptotically bounded wh...