Skip to main content

[Community Question] Calculus: Obtaining a step function given a condition

One of our user asked:

Find a step function s such that $$\int_{0}^{2} s(x) dx=5 \quad \int_{0}^{5} s(x) dx=2$$ The given answer is $$s(x)=\dfrac{5}{2} \quad \text{if} \quad 0 \leq x < 2$$

$$s(x)=-1 \quad \text{if} \quad -2 \leq x \leq 5$$

I don't understand how does one arrive to this solution.. even graphically trying to understand it I didn't come to a solution. Can someone please help me figure out how?


Comments

Popular posts from this blog

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

[Community Question] Calculus: prove $\int_0^\infty \frac{\log^2(x)}{x^2+1}\mathrm dx=\frac{\pi^3}{8}$ with real methods

One of our user asked: I am attempting to prove that $$J=\int_0^\infty\frac{\log^2(x)}{x^2+1}\mathrm dx=\frac{\pi^3}8$$ With real methods because I do not know complex analysis. I have started with the substitution $x=\tan u$ : $$J=\int_0^{\pi/2}\log^2(\tan x)\mathrm dx$$ $$J=\int_0^{\pi/2}\log^2(\cos x)\mathrm dx-2\int_{0}^{\pi/2}\log(\cos x)\log(\sin x)\mathrm dx+\int_0^{\pi/2}\log^2(\sin x)\mathrm dx$$ But frankly, this is basically worse. Could I have some help? Thanks.