Skip to main content

[Community Question] Calculus: How to solve a two-dimensional recurrence problem involving two unknown sequences?

One of our user asked:

In a mathematical physical problem, one has to deal with a non-trivial two-dimensional recurrence problem involving the two sequences $D_{i,j}$ and $\psi_{i,j}$, where $i,j = 1, 2, \dots, N$. Specifically, \begin{align} 2a \left( \psi_{i+1,i+1}+\psi_{i+1,i-1}-\psi_{i-1,i+1}-\psi_{i-1,i-1} \right) + 16 \left( \psi_{i+1,i} - \psi_{i-1,i} \right) +3a \left( D_{i+1,i+1}+D_{i-1,i+1}+D_{i-1,i-1}+D_{i+1,i-1} \right) -16 \left( D_{i,i+1}+D_{i,i-1} \right) +64 \left( D_{i-1,i} + D_{i+1,i} \right) = 0 \, , \\ -----------------------------------\\ 4(4+a)\psi_{i,i} + 2a \left( \psi_{i+1,i+1}+\psi_{i-1,i+1}+\psi_{i-1,i-1}+\psi_{i+1,i-1} \right) +8 \left( \psi_{i,i+1}+\psi_{i-1,i}+\psi_{i,i-1}+\psi_{i+1,i} \right) +3a \left( D_{i+1,i+1}+D_{i+1,i-1}-D_{i-1,i+1}-D_{i-1,i-1} \right) +24 \left( D_{i+1,i} - D_{i-1,i} \right) = 0 \, . \end{align}

Here, $a > 0$.

For a single unknown sequence the generating function method seems to be often a suitable approach for the recurrence problems. I was wondering whether this can also be applied for the present recurrence at hand to yield expressions for the two unknown sequences.

Any help or hint are very welcome.

Thank you


Comments

Popular posts from this blog

[Community Question] Calculus: Asymptotic behavior of $\sum\limits_{n=0}^{\infty}x^{b^n}$

One of our user asked: This follow my previous post here , where Song has proven that $\forall b>1,\lim\limits_{x\to 1^{-}}\frac{1}{\ln(1-x)}\sum\limits_{n=0}^{\infty}x^{b^n}=-\frac{1}{\ln(b)}$ , that is to say : $$\forall b>1,\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+o_{x\to1^-}\left(\log_b(1-x)\right)$$ (The $o_{x\to1^-}\left(\log_b(1-x)\right)$ representing a function that is asymptotically smaller than $\log_b(1-x)$ when $x\to1^{-}$ , that is to say whose quotient by $\log_b(1-x)$ converges to $0$ as $x\to1^{-}$ , see small o notation ) So we have here a first asymptotical approximation of $\sum\limits_{n=0}^{\infty}x^{b^n}$ . I now want to take it one step further and refine the asymptotical behaviour, by proving a stronger result which I conjecture to be true (backed by numerical simulations) : $$\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+O_{x\to1^-}\left(1\right)$$ (The $O_{x\to1^-}\left(1\right)$ representing a function that is asymptotically bounded wh...

[Community Question] Linear-algebra: Explicit example of an additive map which is not R-linear

One of our user asked: Is there an explicit example of an additive map $\mathbb{R}^n \rightarrow \mathbb{R}^m$ which is not linear? (I have mostly thought about the question when $m = n = 1$ , and I don't think the general case is any easier.) I know that something like $f: \mathbb{C} \rightarrow \mathbb{C}$ which sends $f: z \mapsto \text{Real}(z)$ would be additive but not $\mathbb{C}$ -linear. I also know that since $\mathbb{R}$ is a $\mathbb{Q}$ -vector space, I can find some example where $1 \mapsto 1$ and $\sqrt{2} \mapsto 0$ . Is there an explicit example? By explicit, I mean, given an element in the domain, there would be some procedure to decide where it maps. Thank you!