Skip to main content

[Community Question] Calculus: How to solve a two-dimensional recurrence problem involving two unknown sequences?

One of our user asked:

In a mathematical physical problem, one has to deal with a non-trivial two-dimensional recurrence problem involving the two sequences $D_{i,j}$ and $\psi_{i,j}$, where $i,j = 1, 2, \dots, N$. Specifically, \begin{align} 2a \left( \psi_{i+1,i+1}+\psi_{i+1,i-1}-\psi_{i-1,i+1}-\psi_{i-1,i-1} \right) + 16 \left( \psi_{i+1,i} - \psi_{i-1,i} \right) +3a \left( D_{i+1,i+1}+D_{i-1,i+1}+D_{i-1,i-1}+D_{i+1,i-1} \right) -16 \left( D_{i,i+1}+D_{i,i-1} \right) +64 \left( D_{i-1,i} + D_{i+1,i} \right) = 0 \, , \\ -----------------------------------\\ 4(4+a)\psi_{i,i} + 2a \left( \psi_{i+1,i+1}+\psi_{i-1,i+1}+\psi_{i-1,i-1}+\psi_{i+1,i-1} \right) +8 \left( \psi_{i,i+1}+\psi_{i-1,i}+\psi_{i,i-1}+\psi_{i+1,i} \right) +3a \left( D_{i+1,i+1}+D_{i+1,i-1}-D_{i-1,i+1}-D_{i-1,i-1} \right) +24 \left( D_{i+1,i} - D_{i-1,i} \right) = 0 \, . \end{align}

Here, $a > 0$.

For a single unknown sequence the generating function method seems to be often a suitable approach for the recurrence problems. I was wondering whether this can also be applied for the present recurrence at hand to yield expressions for the two unknown sequences.

Any help or hint are very welcome.

Thank you


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you