Consider the $4$ hyperplanes in $\mathbb{R}^5$ given by the equations $$x_1-x_2+x_3+x_4+2x_5=0$$ $$2x_1-x_2+6x_3+2x_4+6x_5=0$$ $$3x_1-3x_2+3x_3+4x_4+7x_5=0$$ $$x_1+x_2+9x_3+x_4+6x_5=0$$ Let $V \leq \mathbb{R}^5$ be the intersection of these hyperplanes. Find a basis for $V$.
One of our user asked: I will be taking the American Math Contest. Various topics are covered in this test including advanced geometry and algebra. It would be great if any of you could provide books/references which contain challenging or hard problems related to advanced geometry and algebra.
Comments
Post a Comment