Skip to main content

Page numbers in two different types of the same novel

I'm reading Jane Eyre in class and we have to do questions. However, there are page numbers in the questions that relate to a different copy of the novel that I have. I was wondering if I could create a formula to translate the page number in the questions to the page number in my book.

Here are the page numbers of the chapters from both books here is a table of the numbers i used

I tried to do this with a simultaneous linear equation and ended up with the formula 5/6x + 31.5

this worked with the first 2 chapters as you can see with the screenshot but after that, the number got further away.

Can someone help me to make a formula? thanks for all your help!

Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you