Skip to main content

[Community Question] Linear-algebra: Cardinality of infinite dimensional vector space of functions

One of our user asked:

Assume that F is an infinite field, k is an infinite cardinal, and V= F^k is a vector space. Can it be prove proved that |V|= dimV?
My thought was that we know that|V|= max {dimV,|F|}, so all I need is to prove is that if |V|=|F|, then also |F|=dimV. Now, from Konig theorem, if |V|=|F|, then k< cf(|F|), so I tried to prove that k< cf(|F|) is imposible, but i didn't know how to continue this line of thougt. Has sombodey know how to prove it?


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).