Skip to main content

[Community Question] Linear-algebra: Is $\mathbb{R}^n$ a vector space or a metric space?

One of our user asked:

In my various courses, for instance, linear algebra and vector calculus, I am somewhat confused with what precisely $\mathbb{R}^n$ is.

From the definition of the Cartesian product, I would conceptualise $\mathbb{R}^n$ as the metric space with some distance operator, where all the points are just $n$-tuples. This is surely a distinct notion from vectors as isn't the point $A = (1,2,3)$, for instance, different from the vector $\vec{a} =\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ ? But if we were to consider the points in $\mathbb{R}^n$ as vectors then clearly it is a vector space. However I don't know whether these two conceptions of $\mathbb{R}^n$ are actually equivalent. Surely the vectors do not correspond to a specific point in space, unlike the points in $\mathbb{R}^n$.

Forgive me if this is a silly question, or if my question seems garbled. Also please help me with tags if they are inappropriate.


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).