Skip to main content

[Community Question] Linear-algebra: Is $\mathbb{R}^n$ a vector space or a metric space?

One of our user asked:

In my various courses, for instance, linear algebra and vector calculus, I am somewhat confused with what precisely $\mathbb{R}^n$ is.

From the definition of the Cartesian product, I would conceptualise $\mathbb{R}^n$ as the metric space with some distance operator, where all the points are just $n$-tuples. This is surely a distinct notion from vectors as isn't the point $A = (1,2,3)$, for instance, different from the vector $\vec{a} =\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ ? But if we were to consider the points in $\mathbb{R}^n$ as vectors then clearly it is a vector space. However I don't know whether these two conceptions of $\mathbb{R}^n$ are actually equivalent. Surely the vectors do not correspond to a specific point in space, unlike the points in $\mathbb{R}^n$.

Forgive me if this is a silly question, or if my question seems garbled. Also please help me with tags if they are inappropriate.


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you