Skip to main content

[Community Question] Calculus: Simple and short true-false tasks regarding Precalculus

One of our user asked:

Here are few of the questions from the previous years' exams. I've chosen the ones I'm not sure about. It's a simple TRUE/FALSE task. Would anyone be able to verify my solution? Some of my answers are good, some are just random guess according to my intuition. I don't really need a detailed explanation... Thanks!

  1. Domain of $f'$ is contained within domain of $f$. - TRUE
  2. Boundary point of set A is also a cluster point of that set. - TRUE
  3. Every increasing sequence and bounded above is convergent. - TRUE
  4. Every increasing sequence and bounded below is convergent. - FALSE
  5. Every increasing sequence is always bounded below. - TRUE
  6. Every sequence is discontinuous function. - FALSE
  7. Every sequence is continuous function. - TRUE
  8. Every function integrable on $<a, b>$ is continuous on $<a, b>$. - FALSE
  9. Function $f(x) = \ln{|x|}$ is discontinuous at $0$. - TRUE
  10. The continuity is necessary for differentiability. - TRUE
  11. Function $f(x) = \frac{x}{|x|}$ is monotonic. - FALSE

Comments

Popular posts from this blog

[Community Question] Calculus: Asymptotic behavior of $\sum\limits_{n=0}^{\infty}x^{b^n}$

One of our user asked: This follow my previous post here , where Song has proven that $\forall b>1,\lim\limits_{x\to 1^{-}}\frac{1}{\ln(1-x)}\sum\limits_{n=0}^{\infty}x^{b^n}=-\frac{1}{\ln(b)}$ , that is to say : $$\forall b>1,\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+o_{x\to1^-}\left(\log_b(1-x)\right)$$ (The $o_{x\to1^-}\left(\log_b(1-x)\right)$ representing a function that is asymptotically smaller than $\log_b(1-x)$ when $x\to1^{-}$ , that is to say whose quotient by $\log_b(1-x)$ converges to $0$ as $x\to1^{-}$ , see small o notation ) So we have here a first asymptotical approximation of $\sum\limits_{n=0}^{\infty}x^{b^n}$ . I now want to take it one step further and refine the asymptotical behaviour, by proving a stronger result which I conjecture to be true (backed by numerical simulations) : $$\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+O_{x\to1^-}\left(1\right)$$ (The $O_{x\to1^-}\left(1\right)$ representing a function that is asymptotically bounded wh...

[Community Question] Linear-algebra: Explicit example of an additive map which is not R-linear

One of our user asked: Is there an explicit example of an additive map $\mathbb{R}^n \rightarrow \mathbb{R}^m$ which is not linear? (I have mostly thought about the question when $m = n = 1$ , and I don't think the general case is any easier.) I know that something like $f: \mathbb{C} \rightarrow \mathbb{C}$ which sends $f: z \mapsto \text{Real}(z)$ would be additive but not $\mathbb{C}$ -linear. I also know that since $\mathbb{R}$ is a $\mathbb{Q}$ -vector space, I can find some example where $1 \mapsto 1$ and $\sqrt{2} \mapsto 0$ . Is there an explicit example? By explicit, I mean, given an element in the domain, there would be some procedure to decide where it maps. Thank you!