Skip to main content

[Community Question] Calculus: Simple and short true-false tasks regarding Precalculus

One of our user asked:

Here are few of the questions from the previous years' exams. I've chosen the ones I'm not sure about. It's a simple TRUE/FALSE task. Would anyone be able to verify my solution? Some of my answers are good, some are just random guess according to my intuition. I don't really need a detailed explanation... Thanks!

  1. Domain of $f'$ is contained within domain of $f$. - TRUE
  2. Boundary point of set A is also a cluster point of that set. - TRUE
  3. Every increasing sequence and bounded above is convergent. - TRUE
  4. Every increasing sequence and bounded below is convergent. - FALSE
  5. Every increasing sequence is always bounded below. - TRUE
  6. Every sequence is discontinuous function. - FALSE
  7. Every sequence is continuous function. - TRUE
  8. Every function integrable on $<a, b>$ is continuous on $<a, b>$. - FALSE
  9. Function $f(x) = \ln{|x|}$ is discontinuous at $0$. - TRUE
  10. The continuity is necessary for differentiability. - TRUE
  11. Function $f(x) = \frac{x}{|x|}$ is monotonic. - FALSE

Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you