Skip to main content

[Community Question] Statistics: Calculating a 95% confidence interval for the difference of two random variables

One of our user asked:

Let $ x_1, ..., x_9 $ and $ y_1, ..., y_8 $ be two random samples of two populations. $ \bar x = 7 $ is the mean of the first and $ \bar y = 11 $ the mean of the second sample. The sample standard deviations are $ s_x = 2 $ and $ s_y = 3.5 $. Now I want to calculate a 95% confidence interval for the difference of the mean of the two populations. I know how to calculate a 95% confidence interval for the mean for the populations: $$ \bar x -2*\left(\frac{s_x}{\sqrt 9}\right) $$ and $$ \bar y -2*\left(\frac{s_y}{\sqrt 8}\right) $$ But don't know how to proceed from here.


Comments

Popular posts from this blog

[Community Question] Calculus: Asymptotic behavior of $\sum\limits_{n=0}^{\infty}x^{b^n}$

One of our user asked: This follow my previous post here , where Song has proven that $\forall b>1,\lim\limits_{x\to 1^{-}}\frac{1}{\ln(1-x)}\sum\limits_{n=0}^{\infty}x^{b^n}=-\frac{1}{\ln(b)}$ , that is to say : $$\forall b>1,\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+o_{x\to1^-}\left(\log_b(1-x)\right)$$ (The $o_{x\to1^-}\left(\log_b(1-x)\right)$ representing a function that is asymptotically smaller than $\log_b(1-x)$ when $x\to1^{-}$ , that is to say whose quotient by $\log_b(1-x)$ converges to $0$ as $x\to1^{-}$ , see small o notation ) So we have here a first asymptotical approximation of $\sum\limits_{n=0}^{\infty}x^{b^n}$ . I now want to take it one step further and refine the asymptotical behaviour, by proving a stronger result which I conjecture to be true (backed by numerical simulations) : $$\sum\limits_{n=0}^{\infty}x^{b^n}=-\log_b(1-x)+O_{x\to1^-}\left(1\right)$$ (The $O_{x\to1^-}\left(1\right)$ representing a function that is asymptotically bounded wh...