Skip to main content

[Community Question] Linear-algebra: Number of possible zero entries in orthogonal matrices

One of our user asked:

It's easy to check that in orthogonal matrix dimension $2 \times 2$ if there is entry $0$ in the matrix necessary one additional zero must be present. Then the total number of zeros is $2$.

In an orthogonal matrix dim. $3 \times 3$ number of zeros can be (if they are present) , I suppose from observations, only $4$ or $6$ - once again we obtain an even number of possible zeros.

  • Can this observation be extended for other orthogonal matrices of greater dimensions? The number of zeros is always even? How to prove this?

  • Maybe, it is known the explicit formula for the number of possible zeros in orthogonal matrices of any dimension?


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).