Skip to main content

[Community Question] Linear-algebra: Number of possible zero entries in orthogonal matrices

One of our user asked:

It's easy to check that in orthogonal matrix dimension $2 \times 2$ if there is entry $0$ in the matrix necessary one additional zero must be present. Then the total number of zeros is $2$.

In an orthogonal matrix dim. $3 \times 3$ number of zeros can be (if they are present) , I suppose from observations, only $4$ or $6$ - once again we obtain an even number of possible zeros.

  • Can this observation be extended for other orthogonal matrices of greater dimensions? The number of zeros is always even? How to prove this?

  • Maybe, it is known the explicit formula for the number of possible zeros in orthogonal matrices of any dimension?


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you