Skip to main content

[Community Question] Geometry: Make shapes with inequality

One of our user asked:

The following set : $$\{(x,y) \in \mathbb{R}^2 \mid x+y \leq 1, x\geq 0, y \geq 0 \}$$ is a triangle. One way to see it is simply that we draw all points under the line of equation $y = 1-x$ with positive coordinates.

My question is :

  • Is it possible with inequalities (just as the one that describe a triangle) to draw some other nice shapes like parallelogram or more generally regular polygons ?

  • Moreover I suspect that there is some linear algebra behind these inequalities. So maybe for example linear algebra can help proving that the above inequality makes a triangle.

Thank you !


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).