Skip to main content

[Community Question] Linear-algebra: Find linear operator for given kernel and image

One of our user asked:

FInd linear map $A: \Bbb{R^3} \rightarrow \Bbb{R^3}$ for given kernel and image. $$Ker(A)=L(\begin{pmatrix} 1 \\ 0 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix})\space ; \space Im(A)=L(\begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix}) \\$$ I've been reading some explonations about this kind of a problem but I didn't understand anything about expanding kernel base to the dimmension of $\Bbb{R^3}$. But, according to this solution example , if I form matrix $A$ like $$\begin{bmatrix} 1 & a&b \\ 0 &c&d\\ 1 &e&f \\ \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \\$$ and $$ \begin{bmatrix} 1 & a&b \\ 0 &c&d\\ 1 &e&f \\ \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \\ $$ I don't get anything here for first equation, and for second I get $$\begin{bmatrix} 1+a+d \\ b+e\\ 1+c+f \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}\\$$ In this case I can't get a matrix of linear transformation like they did in linked example above. If someone can help me with this, but with theese concrete vectors, or to correct this way of solving..


Comments

Popular posts from this blog

[Community Question] Linear-algebra: Explicit example of an additive map which is not R-linear

One of our user asked: Is there an explicit example of an additive map $\mathbb{R}^n \rightarrow \mathbb{R}^m$ which is not linear? (I have mostly thought about the question when $m = n = 1$ , and I don't think the general case is any easier.) I know that something like $f: \mathbb{C} \rightarrow \mathbb{C}$ which sends $f: z \mapsto \text{Real}(z)$ would be additive but not $\mathbb{C}$ -linear. I also know that since $\mathbb{R}$ is a $\mathbb{Q}$ -vector space, I can find some example where $1 \mapsto 1$ and $\sqrt{2} \mapsto 0$ . Is there an explicit example? By explicit, I mean, given an element in the domain, there would be some procedure to decide where it maps. Thank you!

Geometry: Height of a part volume in a cone

Picture of cone Hi, I know this is high school math but i feel kinda stupid right now so I am asking it here: Given is a truncated cone (upside down if relevant). Given is the volume as well as the upper and lower radius. Now the cone got filled with a given volume. How do i determine the height of the filled liquid? As you see in the picture, there is a cone (not a triangle). Given is r1w, r2w, and VW and VA With that at least I am able to calculate everything else, but not hA. Can someone of you please help me?