FInd linear map $A: \Bbb{R^3} \rightarrow \Bbb{R^3}$ for given kernel and image. $$Ker(A)=L(\begin{pmatrix} 1 \\ 0 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix})\space ; \space Im(A)=L(\begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix}) \\$$ I've been reading some explonations about this kind of a problem but I didn't understand anything about expanding kernel base to the dimmension of $\Bbb{R^3}$. But, according to this solution example , if I form matrix $A$ like $$\begin{bmatrix} 1 & a&b \\ 0 &c&d\\ 1 &e&f \\ \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \\$$ and $$ \begin{bmatrix} 1 & a&b \\ 0 &c&d\\ 1 &e&f \\ \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \\ $$ I don't get anything here for first equation, and for second I get $$\begin{bmatrix} 1+a+d \\ b+e\\ 1+c+f \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}\\$$ In this case I can't get a matrix of linear transformation like they did in linked example above. If someone can help me with this, but with theese concrete vectors, or to correct this way of solving..
One of our user asked:
Comments
Post a Comment