Skip to main content

[Community Question] Calculus: calculating 2 constants in a function

One of our user asked:

$$M=\{f\in C[0,2\pi],\int_{0}^{2\pi}f(x)sinxdx=\pi,\int_{0}^{2\pi}f(x)sin2xdx=2\pi\} $$ $a,b\in \mathbb R, g\in M, g(x)=asinx+bsin2x,x\in [0,2\pi]$

I've read on the answers that $a=1,b=2$ and I don't know how to calculate them. Can somebody explain me,please? By the way, the problem is to determine $ \int_{0}^{2\pi}(g(x))^2 dx$ so you have to first get the constants $a$ and $b$.


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).