Skip to main content

[Community Question] Linear-algebra: Explicit example of an additive map which is not R-linear

One of our user asked:

Is there an explicit example of an additive map $\mathbb{R}^n \rightarrow \mathbb{R}^m$ which is not linear? (I have mostly thought about the question when $m = n = 1$, and I don't think the general case is any easier.) I know that something like $f: \mathbb{C} \rightarrow \mathbb{C}$ which sends $f: z \mapsto \text{Real}(z)$ would be additive but not $\mathbb{C}$-linear. I also know that since $\mathbb{R}$ is a $\mathbb{Q}$-vector space, I can find some example where $1 \mapsto 1$ and $\sqrt{2} \mapsto 0$. Is there an explicit example? By explicit, I mean, given an element in the domain, there would be some procedure to decide where it maps. Thank you!


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you