Skip to main content

[Community Question] Geometry: Neep help justifying a vector relation given in a quation

One of our user asked:

i'm trying to do a question for which I was given the following line equations:

$\underline r = \underline a + \lambda \underline u$

$\underline r' = \underline a' + \lambda' \underline u'$

They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.

$\lvert \underline r-\underline r'\rvert^2\lvert \underline u \times \underline u'\rvert^2=\lvert (\underline a - \underline a') \cdot (\underline u \times \underline u')\lvert^2+\lvert (\underline r - \underline r') \times (\underline u \times \underline u')\lvert^2$

I know that

$\lvert (\underline r - \underline r') \times (\underline u \times \underline u')\lvert = \lvert \underline r-\underline r'\rvert\lvert \underline u \times \underline u'\rvert\sin \theta $

but cant get any further.


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).