Skip to main content

[Community Question] Geometry: Neep help justifying a vector relation given in a quation

One of our user asked:

i'm trying to do a question for which I was given the following line equations:

$\underline r = \underline a + \lambda \underline u$

$\underline r' = \underline a' + \lambda' \underline u'$

They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.

$\lvert \underline r-\underline r'\rvert^2\lvert \underline u \times \underline u'\rvert^2=\lvert (\underline a - \underline a') \cdot (\underline u \times \underline u')\lvert^2+\lvert (\underline r - \underline r') \times (\underline u \times \underline u')\lvert^2$

I know that

$\lvert (\underline r - \underline r') \times (\underline u \times \underline u')\lvert = \lvert \underline r-\underline r'\rvert\lvert \underline u \times \underline u'\rvert\sin \theta $

but cant get any further.


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).