Skip to main content

[Community Question] Geometry: geometry - find the path a light ray must take to reach a destination with one bounce off a mirror

One of our user asked:

this seems like it should be simple, but i've run out of leads with a similar-triangles approach, and the algebraic approaches seem pretty daunting, so i'm asking for help.

i'm working on a simulation where a ray of light reaches a point by bouncing once off a planar mirror. i know the position of the source, the destination point, and a point & normal of the mirror. (or any other convenient means of describing the mirror) For simplicity i'm happy to assume the mirror is infinite in extent.

as i mentioned, a geometric solution via similar-triangles and so on has not revealed itself to me, but i'm good at missing those.

for the algebraic approach i've set up a system of equations constraining the on-mirror point to 1) lie on the line of the mirror and 2) the angle between the incoming ray and normal and the angle between the outgoing ray and the normal are equal, by asserting that those Dot-products are equal. I haven't carried that math through to its end because it looks pretty monstrous because the thing i'm trying to solve for appears in so many places including inside many radicals.

I'm not saying i can't solve this, but it looks like a lot of work and if there's a better approach i'd love some advice.

Here's my sketch of the situation. Apologies if i mis-use terminology! Speaking of terminology, is there a word for this point ? The point of reflection ? The point of incidence ?

finding the point of reflection


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you