Skip to main content

[Community Question] Linear-algebra: A computation of a zero eigenvalue

One of our user asked:

Let $d\geq 3$. Consider the $(2d-2) \times (2d-2)$ matrix with $a_{ii} = 1$, $a_{ij} = -\frac{1}{3}$ if $|i-j|=1$ and $a_{ij} = \frac{1}{3}$ otherwise.

Prove that its smallest eigenvalue is $0$ and its multiplicity is $d-2$.

It might be helpful to decompose the matrix as $AA^T$ (as far as I know, this has to be true) but I don't know how to do this effectively either - not much experience in Cholesky factorization.

Any help appreciated!


Comments

Popular posts from this blog

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

[Community Question] Calculus: prove $\int_0^\infty \frac{\log^2(x)}{x^2+1}\mathrm dx=\frac{\pi^3}{8}$ with real methods

One of our user asked: I am attempting to prove that $$J=\int_0^\infty\frac{\log^2(x)}{x^2+1}\mathrm dx=\frac{\pi^3}8$$ With real methods because I do not know complex analysis. I have started with the substitution $x=\tan u$ : $$J=\int_0^{\pi/2}\log^2(\tan x)\mathrm dx$$ $$J=\int_0^{\pi/2}\log^2(\cos x)\mathrm dx-2\int_{0}^{\pi/2}\log(\cos x)\log(\sin x)\mathrm dx+\int_0^{\pi/2}\log^2(\sin x)\mathrm dx$$ But frankly, this is basically worse. Could I have some help? Thanks.