Skip to main content

[Community Question] Statistics: Can a summation be transferred into the denominator?

One of our user asked:

I include a bit of an introduction, even though my main question is more mathematical. I was tasked with finding the Maximum Likelihood Estimate for $\theta$ in $$\mathrm P(X>x) = \left(\frac ax \right)^\theta $$ where $X$ is a variable, and $x$ represents a value that variable can take on. The Probability Density Function is $\newcommand\diff[2]{\frac{\mathrm d#1}{\mathrm d#2}}\diff Fx=\frac{-\theta a^\theta}{x^{\theta + 1}}$, where $F = \mathrm P(X>x)$. I maximise the loglikelihood function $l = \ln(-\theta) + \theta \ln a - (\theta + 1)\ln x\ $ to get $\hat\theta(x_i) = \frac 1{\ln x_i - \ln a}$, where the $\hat.$ indicates that $\hat\theta$ is an estimate of $\theta$, based on the data sample. Now, the answer is supposed to be $$\hat\theta = \frac 1{\overline {\ln x} - \ln a}$$ where $\overline {\phantom{x}}$ indicates the average: $\overline{\ln x} = \frac 1n \sum_i \ln x_i$. I am stumped as to how to get this answer directly from $\hat\theta(x_i)$.

Does $$\frac 1n \sum_i \frac 1{\ln x_i - \ln a} = \frac 1{\overline {\ln x} - \ln a}\qquad ?$$

I think $\frac 1n \sum_i \widehat{\frac 1{\theta(x_i)}} = \frac 1n\sum_i (\ln x_i - \ln a) =\overline{\ln x} - \ln a = \widehat {\frac 1\theta} \implies \hat\theta = \frac 1{\overline{\ln x} - \ln a}$, but is this the only way to show the above?


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you