Skip to main content

[Community Question] Linear-algebra: Unitary Central Character by Schur's Lemma

One of our user asked:

Consider an irreducible smooth representation $\pi$ of the group $G=GL_n(\mathbb{Q}_p)$ with center $Z$. Does there exist a unitary central character for $\pi$?

More precisely, is there a (quasi-)character $\omega: G \to \mathbb{C}^{\times}$ such that $\pi \otimes \omega$ when restricted to the center $Z$ is a unitary character for $Z$? I find this result casually stated in many references, where they say it follows from Schur's lemma. But I am unable to see it directly from Schur's lemma.


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).