Skip to main content

[Community Question] Algebra-Precalculus: I need help with a competition math problem please.

One of our user asked:

I am a competition math student, and I was doing a practice test when I found this problem: "The fourth degree polynomial equation $x^4 - 7x^3 + 4x^2 + 7x - 4 = 0$ has four real roots a, b, c and d. What is the value of the sum $1/a + 1/b + 1/c + 1/d$? Express your answer as a common fraction." First of all, I don't think this polynomial can be factored, so I don't know how to find the reciprocals of the roots. I need help and any help would be appreciated! Note: When they say "Express your answer as a common fraction.", it means that the answer IS a fraction. I tried asking this question already, but I worded it differently, and they didn't get a fraction so I knew it was wrong. This is the link to my other question: Link


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).