One of our user asked:
I found a theorem mentioned in a couple of places, but could not find a proof. The theorem states the following:
Let $A, B \in \mathbb{F^{m,n}}$, $p=min(m,n)$ with singular values $\sigma_1(A) \geqslant...\geqslant \sigma_p(A)$ and $\sigma_i(B) \geqslant...\geqslant \sigma_p(B)$ respectively, then $\sigma_{i+j-1}(A+B) \leqslant \sigma_i(A) + \sigma_j(B)$.
I am looking for a proof of the above. Thanks in advance.
Comments
Post a Comment