Skip to main content

[Community Question] Linear-algebra: Vector Calculus proof part derivation.

One of our user asked:

I am following a proof in my vector calculus book but I am getting stuck.

Let T(s) be the the unit tangent vector at s. and let k(s) = norm( T’(s)) here T’(s) is orthogonal to T(s) and let N(s) be the Unit vector such that T’(s)=k(s)*N(s)

See photoenter image description here

Now, in the proof it says:

Differentiate N(s) • T(s) =0 Gives N’(s)•T(s)+N(s)•T’(s) =0

Hence N’(s)•T(s)=-k(s) But I don’t see how this Is derived?

Also , written on mobile as this is the only access I have at the moment, please go easy on the syntax.


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).