Skip to main content

[Community Question] Linear-algebra: Building matrices from linearly independent rows

One of our user asked:

Let $A\in M_n(\mathbb C) $. Denote its rows by $L_1,L_2,...,L_n$. We know that $L_1,L_2,...,L_n$ are linearly independent. Construct the matrices $B\in M_n(\mathbb C)$ with the rows $O,L_2,...,L_n$($O$ denotes a row of zeroes) and $C$ with the rows $L_2,...,L_n,O$. Let $D=A^{-1}B$ and $E=A^{-1}C$.
a)Prove that $rank(D) =rank(D ^2)=...=rank(D^n)$. b) Prove that $rank(E) >rank(E^2)>...>rank(E^n) $. My approach : $rank(A) =n$ since all its rows are linearly independent. Also $rank D=rank B=n-1$ and $rank E=rank C=n-1$ by the same reasoning and using the fact that if a matrix is multiplied by an invertible matrix its rank doesn't change.
I don't know how to do the same thing for $D^2,...,D^n$ and $E^2,...,E^n$


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you