Skip to main content

[Community Question] Calculus: What to multiply by to get correct form ODE

One of our user asked:

Suppose $y'' + f(x)y = 0$ where $M \geq f(x) \geq m > 0$ on some interval $[a,b]$, then the number zeros $N$ of a non trivial solution is $\lfloor\frac{(b-a)\sqrt{m}}{\pi}\rfloor \leq N \leq \lceil\frac{(b-a)\sqrt{M}}{\pi}\rceil$

Simple.

Now suppose I have an equation $y''+4y'+\frac{8x+\sin(x)}{x+1}y = 0$ and I want to estimate the number of zeros of a non trivial solution.

I can't use the theorem as is, because the ODE is not in the correct form, to fix this, we can multiply by $e^{2x}$ and get $y''e^{2x}+4y'e^{2x}+\frac{8x+\sin(x)}{x+1}ye^{2x} = 0$

Now if we let $ye^{2x} = z$ we have an ODE $z'' + (\frac{8x+\sin(x)}{x+1}-4)z = 0$ which is in the correct form

How did the professor know to multiply by $e^{2x}$? Is there a method to this or was this just a lucky guess


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you