One of our user asked:
The series of functions $$ \sum_{n=0}^{+\infty} \frac{(-x)^n}{1+n!} $$ is pointwise convergent for any $x\in \mathbb{R}$, thus it defines a function $f:\mathbb{R}\rightarrow \mathbb{R}$. Is there a way to evaluate the limit $\lim_{x\rightarrow +\infty} f(x)$?
Comments
Post a Comment