Consider the $4$ hyperplanes in $\mathbb{R}^5$ given by the equations $$x_1-x_2+x_3+x_4+2x_5=0$$ $$2x_1-x_2+6x_3+2x_4+6x_5=0$$ $$3x_1-3x_2+3x_3+4x_4+7x_5=0$$ $$x_1+x_2+9x_3+x_4+6x_5=0$$ Let $V \leq \mathbb{R}^5$ be the intersection of these hyperplanes. Find a basis for $V$.
One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?
Comments
Post a Comment