Skip to main content

[Community Question] Algebra-Precalculus: The limit about the line connecting the intersection of a circle and the $y$-axis and the intersection of the shrinking circle and a fixed circle

One of our user asked:

There is a fixed circle $C_1$ with equation $(x - 1)^2 + y^2 = 1$ and a shrinking circle $C_2$ with radius $r$ and center the origin. $P$ is the point $(0, r)$, $Q$ is the upper point of intersection of the two circles, and $R$ is the point of intersection of the line $PQ$ and the $x$-axis. What happens to $R$ as $C_2$ shrinks, that is, as $r \to 0^+$? (The figure is made with GeoGebra)

The figure

In order to solve this problem, I made a script using GeoGebra in which the circle $C_2$ is a dynamic one whose radius $r$ can be adjusted with a slider. As I set $r \to 0^+$, the figure seems to suggest that $R \to (4,0)$. In particular, this is the state with $r = 0.001$, in which $R$ is reported to be $(3.9999997523053,0)$:

the state with r = 0.001

However, I would like to find out a way to prove (or disprove, though unlikely) my guess that $$\lim_{r \to 0} R = (4,0).$$ But I have little idea. Any help would be appreciated.


Comments

Popular posts from this blog

[Community Question] Calculus: Manifold with boundary - finding the boundary

One of our user asked: I have the manifold with boundary $M:= \lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1\geq 0, x_1^2+x_2^2+x_3^2=1\rbrace \cup\lbrace (x_1,x_2,x_3) \in \mathbb R^3 : x_1= 0, x_1^2+x_2^2+x_3^2\leq1\rbrace$ and I need to find the boundary of this manifold. I think it is $\lbrace (x_1,x_2,x_3) \in \mathbb R^n : x_1= 0, x_2^2+x_3^2=1\rbrace$ , the other option is that the boundary is the empty set? I think the first is right? Am I wrong?

[Community Question] Linear-algebra: Are linear transformations between infinite dimensional vector spaces always differentiable?

One of our user asked: In class we saw that every linear transformation is differentiable (since there's always a linear approximation for them) and we also saw that a differentiable function must be continuous, so it must be true that all linear operators are continuous, however, I just read that between infinite dimensional vector spaces this is not necessarily true. I would like to know where's the flaw in my reasoning (I suspect that linear transformations between infinite dimensional vector spaces are not always differentiable).

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you