Skip to main content

[Community Question] Calculus: Convergence of $\int_0^{+\infty}\frac{\ln(x^{3\over2})|\ln^{\alpha-{2\over3}}(x+x^2)|}{(x^{1\over3+1})^2x^{\alpha}}$

One of our user asked:

Firstly,if I evaluate behavior of function at $+\infty$: $$f(x)\sim\frac{\ln(x^{3\over2})|\ln^{\alpha-{2\over3}}(x^2)|}{x^{\alpha+{2\over3}}}$$ And I know that it is convergent when $\alpha+{2\over3}\gt1\implies\alpha\gt{1\over3}$.
As for $x\to0^+$ $f(x)\sim\frac{|\ln^{\alpha-{2\over3}}(x)|}{x^\alpha}$ and I know that when $\alpha={2\over3}$ we have ${1\over x^{2\over3}}$,which is convergent because ${2\over3}\lt1$.And I observe that $\forall\alpha\leq0$ limit of the quotient equals $0$ and $\forall\alpha\gt0$ to $\infty$.But I am not sure what it gives me and I can't think of any "standart conditions" I can use,like I did before in this problem.


Comments

Popular posts from this blog

[Community Question] Linear-algebra: non-negative matrix satisfying two conditions

One of our user asked: A real matrix $B$ is called non-negative if every entry is non-negative. We will denote this by $B\ge 0$ . I want to find a non-negative matrix $B$ satisfying the following two conditions: (1) $(I-B)^{-1}$ exists but not non-negative. Here $I$ is the identity matrix. (2) There is a non-zero and non-negative vector $\vec{d}$ such that $(I-B)^{-1}\vec{d}\ge 0$ . I tried all the $2\times 2$ matrices, but it did not work. I conjecture that such a $B$ does not exist, but don't know how to prove it.

Order of elements of the Prüfer groups $\mathbb{Z}(p^{\infty})$

Let $\mathbb{Z}(p^{\infty})$ be defined by $\mathbb{Z}(p^{\infty}) = \{ \overline{a/b} \in \mathbb{Q}/ \mathbb{Z} / a,b \in \mathbb{Z}, b=p^i$ $ with$ $ i \in \mathbb{N} \}$ , I wish show that any element in $\mathbb{Z}(p^{\infty})$ has order $p^n$ with $n \in \mathbb{N}$ . i try several ways but I have not been successful, some help ?? thank you